
A Fault-Tolerant CORBA Name Server�y

Silvano Ma�eis
Olsen & Associates, Zurich, Switzerland

ma�eis@acm.org

Abstract

OMG CORBA applications require a distributed

naming service in order to install and to retrieve ob-

ject references. High availability of the naming service

is important since most CORBA applications need to

access it at least once during their lifetime. Unfortu-

nately, the OMG standards do not deal with availabil-

ity issues; the naming services of many of the com-

mercially available CORBA object request brokers in-

troduce single points of failure. In this paper we de-

scribe the design and implementation of a replicated,

highly-available CORBA name server that adheres to

the OMG Common Object Services Speci�cation. Our

naming service can be replicated at run-time, while

many applications are installing and retrieving object

references. We compare our approach with the ap-

proaches taken by the ILU, NEO, Orbix, and DOME

object request brokers. The performance of our name

server is measured for various degrees of replication.

1 Introduction

Many business-oriented, distributed applications
need to accommodate several programming languages
and to access legacy information systems. Heterogene-
ity, interoperability, and extensibility must thus be ad-
dressed by the system software used to develop next
generation business applications. The Object Manage-
ment Architecture (OMA) [12], proposed by the Object
Management Group (OMG), aims at reducing com-
plexity, lowering development costs, and hasten the in-
troduction of new applications. OMG plans to accom-
plish this through the introduction of the CORBA ar-
chitectural framework [10], of a standard interface dec-

�Work supported by the Swiss National Science Foundation
(Schweizer Nationalfonds) while the author was on leave at Cor-
nell University, Dept. of Computer Science.

yin: Proceedings of the 15th IEEE Symposium on Reliable
Distributed Systems, IEEE Press, Niagara-on-the-Lake, Canada,
Oct. 1996

laration language, of ORB gateways [9], and of Com-
mon Object Services [7]. These are the main compo-
nents of OMA. Endorsed by more than 600 enterprises
world wide, CORBA has become one of the most im-
portant standards for open distributed systems.

OMA allows developers to model and to imple-
ment distributed applications in an object oriented
way. OMA objects are free from the ties imposed by
operating systems and programming languages: two
CORBA objects residing on the ORBs provided by
two di�erent manufacturers can interoperate through
ORB gateways, even when implemented in di�erent
programming languages. Applications can be struc-
tured in a highly modular way and become easier to
maintain and to extend.

This sounds very enticing. However, partial fail-

ures | a fundamental problem of distributed systems
| have not adequately been addressed by the OMG
yet. No matter how carefully a CORBA application
has been speci�ed, implemented, and tested, its net-
work objects will crash unexpectedly due to power
outages, human lapses, hardware faults, and software
bugs. CORBA applications should thus be prepared
to deal with failures and to treat them as a normal

occurrence. The OMG standards do not specify the
behavior of an application when an object fails or a
network partitions. This is unfortunate as the OMG
standards are becoming very popular.

To make things worse, many of the commercially
available ORBs introduce single points of failure: the
name server, an important component of the OMA,
is often provided in the form of a singleton process.
If that process fails, many applications cannot make
progress any more.

In this paper we will argue that the provision of reli-
able OMA object services requires system support not
available in today's ORBs [4]. The goal of our work has
been to design and to implement Electra | a CORBA
object request broker for reliable, highly available ap-
plications. Group communication, run-time replication
of stateful CORBA objects, consistent failure detec-

tion, and fault-tolerant object services are the key fea-
tures of Electra. Electra runs atop of group commu-
nication subsystems like Horus [13] and Isis [1]. Elec-
tra can be ported to other communication subsystems
without much e�ort.

An overview of the Electra ORB is given in [5]. For a
description of the underlying replication and reliability
protocols refer to [4]. In [11] we describe a graphical
availability manager for Electra that monitors, repli-
cates, and restarts CORBA objects. This paper focuses
on the design and implementation of a fault-tolerant
OMG naming service for Electra.

2 The OMG Naming Service

The OMG Common Object Services Speci�cation
(COSS) [7] de�nes a federated naming service to
maintain name-to-object mappings. The speci�cation
mainly consists of a textual description of how the ser-
vice works and of its CORBA-IDL (Interface De�nition
Language) interfaces.

2.1 Terms and Definitions

In the OMA model, a server object that is able to
handle requests is called an object implementation. We
will also use the term CORBA object , or simply ob-

ject , to refer to an object implementation. A proxy
object used by client applications to access an object
implementation is called object reference. The object
reference is a local representative of a remote object
implementation. Both object reference and implemen-
tation obey the same CORBA-IDL interface.

In the COSS speci�cation, a name-to-object associ-
ation is called a name binding . A name binding is de-
�ned relative to a naming context . A naming context
is a CORBA object that maintains a set of name bind-
ings. We shall use the terms naming context, naming
service, and name server interchangeably.

To resolve a name is to pass a name to a naming
context and to obtain the associated object reference.
To bind a name is to install an object reference in a
naming context under a certain name.

Because a context is like any other CORBA object,
it can also be bound to a name in some other context.
This is how naming graphs are constructed. Figure 1
depicts a naming graph.

A compound name de�nes a path in some naming
graph to navigate the resolution process. Many of the
operations de�ned on naming contexts take a Name ob-
ject as parameter. A Name is a sequence of components:

<c1 ; c2; ... ; cN>

/

/sys /proj /usr

/sys/ois /sys/electra /proj/ois /proj/electra /usr/joe /usr/ann /usr/bob

Figure 1. Sample Naming Graph. Circles
denote context objects, arrows point from
father-contexts to subcontexts.

Each component, except the last, is used to access a
context object; the last component denotes the bound
object. Thus, name resolution is de�ned through the
recursive relation:

ctx->resolve(<c1 ; c2; ... ; cN>) =

ctx->resolve(<c1 ; c2; ... ; cN-1>)

->resolve(<cN>)

2.2 Naming Context IDL

The code fragment below contains a simpli�ed ver-
sion of the COSS naming context IDL speci�cation:

2

// CORBA-IDL:
module CosNaming f

typedef string Istring;
struct NameComponent f Istring id; Istring kind; g;
typedef sequence <NameComponent> Name;
enum BindingType f nobject, ncontext g;
struct Binding f

Name binding name; BindingType binding type;
g;

typedef sequence <Binding> BindingList;
interface BindingIterator;

interface NamingContext f
exception NotFound f : : :g;
exception CannotProceed f : : : g;
exception InvalidNamef : : :g;
exception AlreadyBoundf : : : g;
exception NotEmptyf : : :g;

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind context(in Name n,
in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

void rebind context(in Name n,
in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve(in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new context();
NamingContext bind new context(in Name n)

raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

void destroy() raises(NotEmpty);

void list(in unsigned long how many,
out BindingList bl, out BindingIterator bi);

g;
g;

The bind operation installs a name-to-object bind-
ing, rebind overwrites an existing binding. To resolve
a name binding, the resolve operation is invoked. To
delete a name binding, the unbind operation is used.

bind context names an object that is a naming con-
text. Naming contexts that are bound this way par-
ticipate in the resolution of compound names. re-

bind context overwrites an existing binding. The
new context operation returns a naming context im-
plemented by the context object the operation was in-
voked on. The bind new context operation works like
new context, except that the created context is bound
to the name supplied as an argument. Finally, the de-
stroy operation deletes a naming context.

COSS also speci�es operations that can be used by
applications to browse the entries in a naming con-

text: the list operation returns the speci�ed amount
of names in the context the operation is applied to.
how many speci�es the number of names to be returned.
If more than how many bindings are contained in the
context, a BindingIterator object reference is re-
turned. The BindingIterator allows the application
to retrieve the remaining names through the following
interface:

// CORBA-IDL:
interface BindingIterator f

boolean next one(out Binding b);
boolean next n(in unsigned long n,

out BindingList bl);
void destroy();

g;

2.3 An Example

Applications use the resolve initial references

operation de�ned by the OMG ORB Initialization
Speci�cation [8] to initially obtain a reference for the
default naming context. The code fragment below il-
lustrates how a server application initially obtains a ref-
erence to the default naming context, creates a File-

Server object implementation, and binds a reference
to it under the name "/usr/tom/filesrv":

// C++

main(int argc, char **argv) f
CORBA::Environment env;
CORBA::Object var obj; // plain object reference
CORBA::ORB ptr orb =

CORBA::ORB init(argc, argv, "Electra ORB");
CORBA::BOA ptr boa = orb->

CORBA::BOA init(argc, argv, "Electra BOA");
CosNaming::Name name; name.length(1);

// obtain a reference to the default name server:
NamingContext var nc =

NamingContext:: narrow(
orb->resolve initial references("NameService"));

// create and bind a FileServer object:
im FileServer fs;
obj = fs.create(...); // get an object reference
name[0].id = "/usr/tom/�lesrv";
nc->bind(name, obj, env);
// handle exceptions : : :
fs.impl is ready();

g

The next code fragment illustrates a client applica-
tion that binds to the FileServer object implementa-
tion:

3

// C++

main(int argc, char **argv) f
int fd;
CORBA::Environment env;
CORBA::Object var obj;
CORBA::ORB ptr orb =

CORBA::ORB init(argc, argv, "Electra ORB");
CORBA::BOA ptr boa = orb->

BOA init(argc, argv, "Electra BOA");
CosNaming::Name name; name.length(1);

NamingContext var nc =
NamingContext:: narrow(

orb->resolve initial references("NameService"));

FileServer var fsp; // object reference to a FileServer
name[0].id = "/usr/tom/�lesrv";
obj = nc->resolve(name);
// handle exceptions : : :
fsp = FileServer:: narrow(obj); // downcast
// access the FileServer
fd = fsp->open("/tmp/test", "r", env);
// : : :

g

3 Adding Fault-Tolerance to Naming
Contexts

This section begins with a description of the name
serving mechanisms implemented in the ILU, NEO, Or-
bix, and DOME object request brokers. In particu-
lar, we shall focus on their fault-tolerance techniques.
NEO, Orbix, and DOME are commercial CORBA re-
quest brokers, ILU is available in source code form at
no fee. Afterwards, we shall elaborate on a set of re-
quirements for a fault-tolerant, scalable CORBA name
server.

3.1 Naming Context Implementations

3.1.1 ILU

ILU fromXerox PARC provides a simple binding mech-
anism that employs multicast to �nd an object imple-
mentation registered under a certain name. There is no
name server object per se; an object implementation
simply listens for binding-requests that are multicast
by the clients. A binding request contains the name
of the sought object implementation. The implemen-
tation that is listening to that particular name returns
its object reference to the client. A client application
that wishes to bind to a certain object implementation
submits a multicast and waits for the �rst matching
object implementation to reply.

This scheme is elegant and fault-tolerant as no single
point of failure is introduced. However, object imple-
mentations must be reachable by multicast, thus lim-
iting the distribution of object implementations to a

single subnet, unless a protocol like IP-Multicast is
employed. Another drawback is that when an object
implementation fails, its name-to-object mapping also
disappears. This is unwanted in certain situations.
Furthermore, with this scheme it may occur that sev-
eral incompatible object implementations listen to the
same name, since there is no central naming author-
ity to manage the name space. Last but not least, the
ILU naming service does not allow clients to browse
the name-to-object mappings.

The ILU naming service does not comply with OMG
COSS. However, we note that ILU allows programmers
to replace this simple naming mechanisms with more
sophisticated ones.

3.1.2 NEO

Sun Microsystem's NEO features a COSS-compliant
naming context service. The naming service is pro-
vided by a set of cooperating server processes that can
be distributed across machines. If one of the processes
goes down, the part of the naming graph it manages
becomes unavailable, but the other parts of the nam-
ing graph remain accessible. Thus, access to a particu-
lar node in the naming graph is vulnerable to a single
point of failure. The run-time replication of NEO name
servers is not supported yet.

3.1.3 Orbix

Orbix 2:0 from Iona Technologies does not provide a
COSS compliant naming facility yet. Orbix presently
implements a simple multicast-based binding mecha-
nism which is similar to the one implemented in ILU.
Iona is working on a fault-tolerant, COSS compliant
name server that will be part of a future release of Or-
bix. The Iona engineers are experimenting with a pri-
mary/backup replication scheme, the naming service
was still in an early stage of development when this
paper was written.

3.1.4 DOME

DOME from Object Oriented Technologies, Ltd. pro-
vides a naming service, called Location Broker (LB),
that does not comply with the COSS. DOME's name
serving philosophy di�ers from the approaches taken
by the other well-known ORBs: in DOME, there is no
link between individual objects and a DOME LB.

A DOME system may contain multiple LBs, some
will serve di�erent parts of the naming space, and oth-
ers will serve the same part for fault-tolerance and per-
formance. When the system starts up, each ORB reg-
isters its details with each LB that it \knows about".

4

Thus, LBs need to have prede�ned, globally known ad-
dresses. The details of an ORB include information
like its ORB identi�er, its network address, and the
C++ classes it supports. An ORB can support many
classes, and a class can be supported by many ORBs.

An application contacts a LB to either obtain loca-
tion details for a speci�c ORB (and not for a speci�c
object implementation), or by repeated inquiries can
get the location of the ORBs that support a speci�c
C++ class.

The information maintained by a LB is retained in
persistent store, so a crashed LB can be restarted and
re-initialized with that information. Multiple LBs can
be initialized with the same data, leading to a simple
replication scheme where an ORB needs register with
all of the replica. However, there are no mechanisms
to ensure that multiple registrations can be carried out
atomically. If a client is looking for an ORB, it queries
all LB it \knows about" until it �nds the location de-
tails it is looking for.

In the author's opinion, the DOME fault-tolerance
mechanisms are optimistic and work well only if the
name-to-binding mappings are static, which is the case
in DOME: an ORB registers its details when it comes
up, this information is usually not modi�ed. DOME
provides no mechanisms for consistent failure detection
or for the handling of partitioned networks.

3.2 Requirements

Following principles should guide the implementa-
tion of a COSS compliant NamingContext service:

� Object Service: The naming context is to be im-
plemented in the form of an object service, and not
by using a simple multicast mechanism as in ILU.
This is to allow the browsing of name-to-object
mappings, to avoid that incompatible objects start
listening to the same name, and to separate the
lifetime of an object-reference from the lifetime of
the object implementation the reference points to.

� Active Replication: NamingContexts can be
replicated across machines for fault-tolerance and
performance. To that purpose, the object group [6]
abstraction is employed.

� Dynamic Replication: The replication degree
can be increased and decreased at run-time, while
applications are interacting with the naming ser-
vice. When a new NamingContext is created, the
ORB requests a snapshot of the bindings from an
existing replica and copies this state information
to the newcomer.

� Group Communication: Operations that alter
the internal state of a NamingContext (e.g., the
bind operation) are transmitted by totally ordered,
reliable multicast [3] to ensure a consistent repli-
cated state.

� E�cient Lookup: Operations that do not alter
the replicated state (e.g., the resolve operation)
are transmitted by point-to-point communication
to a nearby NamingContext replica.

� Failure Detection: All applications have a con-
sistent view of which NamingContext objects have
presumably failed. This is made possible by a fail-
ure suspector service [2].

� Membership Management: A client's ORB is
informed when a NamingContext object joins or
leaves the replication group. Thus, an ORB no-
tices a complete failure of the naming context. In
such situation, it emits a warning noti�cation and
suspends client applications that are trying to in-
teract with the naming service, until a new Nam-

ingContext is created and joined to the group.

3.3 System Support

The implementation of a naming service adhering to
above requirements demands system support not avail-
able in the CORBA ORBs in widespread use today.
However, a considerable amount of research on fault-
tolerant distributed systems has been performed in the
context of the virtual synchrony model [1], leading to
toolkits such as Consul, Delta-4, Horus, Isis, Phoenix,
Totem, and Transis. However, most of these systems
o�er a rather low-level, non-portable C API.

Active and passive replication are the main fault-
tolerance mechanisms provided by the virtual syn-
chrony model. In this model, processes can be repli-
cated by joining them to a process group. Commu-
nication with a process group is by reliable, order-
preserving multicast. Processes can be replicated at
run-time. Failures are detected and reported through
a distributed failure detection service [2].

The aforementioned Electra ORB is conceived to
run atop of subsystems that implement the virtual
synchrony model. It o�ers the system support neces-
sary to implement highly available object services, and
presents a CORBA interface to group communication
subsystems.

At �rst sight, Electra appears to the programmer
like any conventional CORBA ORB: distributed ob-
jects are speci�ed in CORBA-IDL. The Electra IDL
compiler generates C++ communication stubs as well as

5

skeletons of the object implementations. A program-
mer implements the empty member functions of the
skeletons to obtain fully functional network objects.

The Electra IDL compiler generates three special
member functions in the object skeleton, needed to
implement a fault-tolerant object [5]. The get state

member function is invoked by Electra when a new ob-
ject joins a replication group. The purpose of this func-
tion is to obtain a snapshot of the application-speci�c,
internal object-state from an existing group member.
The im NamingContext::get state operation, for in-
stance, returns all the name-to-object bindings main-
tained by a NamingContext object1.

The set state member is invoked on the newcomer
object to pass it the state snapshot. Finally, there is a
view change member function which is invoked on all
group members after an object has joined or left the
group.

The Electra Basic Object Adapter (BOA) [10]
exports the operations create group, join group,
leave group, and destroy group which allow appli-
cations to manage object groups.

Besides replication, object groups can be used to im-
plement e�cient distribution of data by protocols like
IP-Multicast, object migration, load balancing, and
caching [5].

4 Implementing a Highly Available
Naming Context

This section describes how a fault-tolerant, scalable
COSS name server was implemented with the system
support described in Section 3.3. The naming context
is part of the Electra run-time system and is in every-
day use.

4.1 Service Creation

In order to make a workstation part of the Elec-
tra con�guration, a daemon process containing an in-
stance of the NamingContext object implementation is
launched. Electra NamingContext objects join a prede-
�ned object group whose object reference is retrieved
from a con�guration �le. Thus, by default, there will
be one replica of the naming context per machine. Ap-
plications bind to their default name server by read-
ing the aforementioned �le. This is transparent to the
Electra programmer.

1the state is encapsulated in a sequence<any> datatype.

4.2 Binding Object References

Since binding requests install a new name-to-object
mapping, they must be multicast to all NamingContext
replica in a reliable and totally ordered manner. Re-

liable means that every surviving NamingContext will
eventually dispatch the request (lost requests are re-
transmitted). Totally ordered means that every group
member dispatches all requests in exactly the same or-
der [3].

The scalability and e�ciency of the binding oper-
ation depends on how the total ordering protocol is
implemented and on whether it exploits IP or UDP
multicast, where available. Electra is conceived to be
portable across various group communication subsys-
tems, the present version supports both Horus and Isis.
The performance of the naming context thus mainly
depends on the con�guration of Electra. Performance
data for the Horus and the Isis con�gurations will be
presented in Section 5.

4.3 Resolving Object References

No group communication is required to resolve a
name. By default, Electra will deliver point-to-point
a resolve operation to the naming context running on
the same machine as the querying application. A re-
mote object is chosen in case there is no local one. If
the object fails, a new one is chosen and any aborted
resolve operation is restarted.

4.4 State Transfer

This section describes the extra work to be per-
formed by the Electra programmer in order to ob-
tain a fault-tolerant, dynamically replicable implemen-
tation of the NamingContext interface. The extra work
mainly consists in implementing the get state and
set state member functions we mentioned in Sec-
tion 3.3.

// C++

void
im NamingContext::get state(CORBA::AnySeq& state)f
state.length(bindings.length() � 2);

// copy mappings into the state sequence:
for(int i = 0; i < 2 � bindings.length(); i ++)f

state[i] <<= bindings[i].name;
state[i +1] <<= bindings[i].reference;

g;
g;

The im NamingContext::get statemember func-
tion determines the number of name-to-object bindings

6

which are stored in the local bindings sequence, and
sets the length of the state sequence accordingly. Sub-
sequently, the bindings are read out of the bindings

sequence and assigned to the elements of the state

sequence.
When a new NamingContext replica joins an ob-

ject group, Electra will call the get state operation
of an existing group member, marshal the state ob-
ject, transfer it to the newcomer, unmarshal it and pass
it to the newcomer's set state member function:

// C++

void
im NamingContext::set state(
const CORBA::AnySeq& state)f
bindings.length(state.length() / 2);

// construct the bindings out of the received state:
for(int i = 0; i < state.length(); i + = 2)f

state[i] >>= bindings[i].name;
state[i +1] >>= bindings[i].reference;

g;
g;

Note that state transfers are automatically synchro-
nized with the name server operations issued by the
client applications to ensure a consistent replicated
state. This is a key feature of the virtual synchrony
model.

4.5 Creating Subcontexts

Because a context is like any other CORBA object,
it can also be bound to a name in some naming con-
text to create a naming graph. The new context and
bind new context operations are used to attach sub-
contexts to an existing context. However, special care
regarding fault-tolerance must be taken when imple-
menting these operations: when a new context (or
bind new context) request is sent to a replicated Nam-

ingContext, each group member will create a Naming-
Context and join it to a new object group. The result is
depicted in Figure 2. This allows the creation of fault-
tolerant naming graphs. The replication degree of a
subcontext equals the replication degree of its father-
context.

4.6 Fault-Tolerant Binding Iterators

As was mentioned in Section 2.2, the Naming-

Context::list operation returns a speci�c number of
bindings. If the naming context contains additional
bindings, a BindingIterator object reference is re-
turned allowing the application to browse the remain-
ing entries, by issuing the next one and next n oper-
ations.

/proj

/proj/ois

/proj/electra

Figure 2. Creation of a Fault-Tolerant Sub-
context. Circles represent NamingContext ob-
jects, ovals denote object groups, arrows
point to subcontexts.

7

For the sake of fault-tolerance, binding iterators
need to be instantiated in the form of an object group
(Figure 3). The replication degree of a binding iterator
equals the replication degree of the associated naming
context.

NamingContext
Object Group

BindingIterator
Object Group

Client
Application

NamingContext::list Request

BindingIterator::next_one Request

Figure 3. Creation of a Fault-Tolerant Binding
Iterator

5 Performance

We have implemented the described fault-tolerant
naming context service and incorporated it into the
Electra ORB. The performance of the service was mea-
sured in relation to various replication degrees. To that
purpose, we distributed up to eight replica of the nam-
ing context across a cluster of �ve SPARCstation 10
and four SPARCstation 20 machines. The cluster was
interconnected by a moderately loaded 10 Mbps Eth-
ernet and running the SUN OS 4:1:3 operating system.
Each replica was running on its own workstation, and
a benchmark application was running on the remaining
workstation.

Two di�erent benchmarks were carried out: the �rst
one measured the time needed to perform 300 bind

operations, the second one the time to perform 300
resolve operations. Each experiment was carried out

three times for each replication degree. We will report
the averages of the three results. Moreover, we tested
two con�gurations of the Electra ORB, one running on
the Isis, and one on the Horus toolkit.

A bind operation is sent to each group member by
totally ordered multicast, since the internal state of the
name server is altered. A resolve operation, on the
other hand, is sent to only one group member, since
just a query is performed and no state is altered. This
is transparent to the programmer.

For resolve operations, Electra tries to select a
group member that runs on the same machine as the
querying application. However, in our experiment the
server objects and the benchmark application were run-
ning on di�erent workstations. In this case, program-
mers can instruct Electra to choose a remote member
either at random, in a round-robin fashion, or using an
algorithm provided by the programmer. In our exper-
iment we provided a simple algorithm that selects the
same group member for all resolve requests. If this
group member fails, a new member is chosen automat-
ically and any aborted request is restarted.

Figure 4 summarizes the results of the performance
measurements. The Y axis reports the average time
needed to perform one operation with the name server,
i.e., the measured elapsed times were divided by 300.
The X axis spots the replication degree of the name
server.

With the Isis toolkit as communication subsystem,
it took an average of 33:7 milliseconds to perform a
bind operation on eight replica. With Isis, increas-
ing the group size by a factor of two decreased per-
formance of the bind operation by approximately a
factor of two. However, a replication degree of two or
three will be su�cient in most situations, especially
since failed NamingContext objects can be restarted at
run-time without corrupting the internal state of the
service. With three replica, it took an average of 14:2
milliseconds to perform a bind. With two replica, it
took an average of 11:4 milliseconds.

The Isis abcast2 protocol was used to transmit bind
operations to the group, the Isis cbcast3 protocol for
point-to-point delivery of resolve operations to one
group member. A resolve operation took an average
of 4:9 milliseconds in Isis. Note that the performance
of query operations does not depend on the replication
degree. We used Isis Version 3:2:1 on SUN OS 4:1:3.
The applications were compiled with GNU g++ 2:6:3.

With Horus, the bind operation scaled consider-
ably better than with Isis, it took an average of
6:6 milliseconds to transmit a bind operation to

2totally ordered multicast.
3causally ordered multicast.

8

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

Replication Degree

E
la

ps
ed

 T
im

e
Pe

r
R

eq
ue

st
 [

m
se

c]
Isis resolve()

Isis bind()
Horus bind()

Horus resolve()

Figure 4. Performance of the Electra Naming Service

three replica, and 13:3 milliseconds to transmit it to
eight replica. We employed the Horus protocol stack
"BUFFER:ORDER:CAUSAL:UNPACK:TOTAL:MERGE:

VIEWS". A Horus resolve operation took an average of
4:46 milliseconds to complete, regardless of the group
size. For resolve requests we employed the same pro-
tocol stack as for bind requests, although no totally
ordered multicast is required for resolve requests. We
are planning to extend Electra to support two di�er-
ent protocol stacks, one for multicast and another for
point-to-point requests. Experiments have shown that
with such extension, a resolve requests takes less than
3:5 milliseconds on the average.

The considerable di�erence in bind performance is
due mostly to the fact that Horus employs IP Multi-
cast, and a rotating-token protocol to implement total
ordering. IP Multicast leads to much lower commu-
nication overhead during multicast, the rotating token
protocol is very e�ective when just a few applications
are sending multicasts at the same time. Note that Isis
can be con�gured to use IP Multicast on the Solaris
operating system. We have not assessed the e�ect of
IP Multicast on our Isis experiment yet.

Finally, the Horus system is geared toward asyn-
chronous and deferred synchronous communication.
Although Electra supports these communication styles,
we used blocking communication in our experiments,
as this is the predominant communication style in
CORBA. We also note that we have not been working
on optimizing the performance of the naming context

or of the Electra ORB yet.

6 Conclusions

In this paper we described the design and implemen-
tation of a fault-tolerant OMG COSS Naming Context,
a service which is aimed at maintaining the name-to-
object mappings of a CORBA object request broker.
Fault-tolerance is achieved through the active replica-
tion of NamingContext objects. The replicas are dis-
tributed across machines. The Electra ORB directs
lookup requests to a nearby replica, binding opera-
tions, on the other hand, need be multicast to all of
the replica as the internal state of the service is modi-
�ed.

The system support necessary to implement our de-
sign includes object groups, reliable multicast, total
ordering, failure detection, and virtual synchrony. Our
naming service was implemented atop of Electra { a
CORBA Object Request Broker providing this kind of
system support. Electra is conceived to run atop of
group communication subsystems like Horus and Isis.

Our naming service advances the current state-of-
the-art in that the service can be replicated while be-
ing accessed by many clients, in that a federated, highly
available naming space can be provided, in that it of-
fers good performance, and in that the service adheres
to the OMG COSS speci�cation. Object request bro-
kers like ILU, DOME, Orbix, and NEO do not support

9

dynamic replication of CORBA objects yet.
The performance of our naming service was assessed

for several replication degrees. The measurements were
carried out on a cluster of SUN workstations intercon-
nected by a moderately loaded 10 Mbps Ethernet net-
work. When running atop of the Horus communication
subsystem, it takes an average of 13:3 milliseconds to
install a name-binding into eight replica of the naming
context, and 6:6 milliseconds for three replica. It takes
an average of 4:46 milliseconds to resolve a name. The
performance of resolve operations does not depend on
the group size, as these need be transmitted to only
one group member.

Acknowledgements

The author would like to thank Salil Deshpande
(CustomWare, Inc.), Roger Barnett (Object Oriented
Technologies, Ltd.), Bill Janssen (Xerox PARC), Chris
Horn (Iona Technologies), John Moreau (Iona Tech-
nologies), Roy Friedman (Cornell University), Robbert
van Renesse (Cornell University), Alexey Vaysburd
(Cornell University & Isis, Inc.), James Shaw (Olsen
and Associates), and the anonymous referees for their
suggestions.

Availability

The naming service described in this paper is part of
the Electra distribution. Electra is publicly available
through the Web at
http://www.olsen.ch/�ma�eis/electra.html

References

[1] K. P. Birman and R. van Renesse, editors. Reliable

Distributed Computing with the Isis Toolkit. IEEE
Computer Society Press, 1994.

[2] T. D. Chandra and S. Toueg. Unreliable Failure Detec-
tors for Reliable Distributed Systems. Technical Re-
port 93-1374, Department of Computer Science, Cor-
nell University, Aug. 1993.

[3] V. Hadzilacos and S. Toueg. Fault-Tolerant Broad-
casts and Related Problems. In S. Mullender, editor,
Distributed Systems. Addison Wesley, second edition,
1993.

[4] S. Landis and S. Ma�eis. Building Reliable Distributed
Systems with CORBA. to appear in Theory and Prac-

tice of Object Systems, John Wiley Publisher, NY.
[5] S. Ma�eis. Adding Group Communication and Fault-

Tolerance to CORBA. In Proceedings of the 1995

USENIX Conference on Object-Oriented Technologies,
Monterey, CA, June 1995. USENIX.

[6] S. Ma�eis. The Object Group Design Pattern. In Pro-
ceedings of the 1996 USENIX Conference on Object-

Oriented Technologies, Toronto, Canada, June 1996.
USENIX.

[7] Object Management Group. Common Object Services

Speci�cation Volume I. OMG Document 94-1-1.
[8] Object Management Group. ORB Initialization Spec-

i�cation. OMG Document 94-10-24.
[9] Object Management Group. Universal Networked Ob-

jects, Sept. 1994. OMG Document 94-9-32.
[10] Object Management Group. The Common Object Re-

quest Broker: Architecture and Speci�cation, 1995. Re-
vision 2.0.

[11] Silvano Ma�eis. Piranha { A Hunter of Crashed
CORBA Objects. Technical Report 96-1569, Cornell
University, Dept. of Computer Science, Feb. 1996.

[12] R. M. Soley. Object Management Architecture Guide.
Object Management Group. OMG Document 92-11-1.

[13] R. van Renesse, K. P. Birman, and S. Ma�eis. Horus:
A Flexible Group Communication System. Commu-

nications of the ACM, 39(4), Apr. 1996.

10

